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B R I E F  C O M M U N I C A T I O N S

APPROACHES TO FORMATION OF THE ELEUTHESIDE 

NUCLEUS BASED ON (+)-δ-CADINOL

I. P. Tsypysheva,  A. M. Kunakova,  UDC 547.596.21   1

F. A. Valeev,  and G. A. Tolstikov1    2

 

Schemes for synthesizing eleuthesides 1 [1], new cytotoxic marine metabolites, are based on the use of the
monoterpenes (+)-carvone [2, 3] or (-)-α-phellandrene [4, 5].  We think that the sesquiterpenoid (+)-δ-cadinol (2) structure can
act as an alternate platform for constructing the eleutheside nucleus through an intermediate like 3 [2, 3].

Thus, we studied methods for allylic oxidation of 2 followed by ozonolytic cleavage of the double bond with
differentiation of the resulting carbonyls and steps for constructing the side chains before final closure into the tricyclic nucleus.

Diol 4 was prepared in 32% yield along with the β-isomer (42%) and 1,4-epoxide 5 (13%) by reacting (+)-δ-cadinol
and SeO  in Ac O at 70 C followed by hydrolysis of the acetates.  Ozonolysis of the monobenzylated derivative of 4 (1. O ,2 2

o
3

MeOH, -78 C; 2. Me S, p-TsOH) gave ketoacetal 6, a key intermediate for continuing the synthesis.o
2

Self-protection of the tricyclic ether 5 is an important advantage over other compounds for studying approaches to the
formation of the tricyclic 4,7-oxaeunicellane nucleus.  Thus, the method for preparing this compound was optimized.  Boiling
a benzene solution containing a catalytic amount of p-TsOH and the product mixture obtained after oxidation of (+)-δ-cadinol
by SeO  in Ac O at 70 C gave the 1,4-epoxide 5 in 73% yield.  The next steps of ozonolysis (1. O , MeOH, -78 C; 2. Me S,2 2

o                  o
3 2

p-TsOH catalyst), acetylenation (HC�CMgBr, Et O, 0 C), and Knoevenagel condensation (NCCH CO Et, EtOH, β-alanine)2
o

2 2
[2, 3] formed the intermediate 7, a bicyclic analog of 3.

H  and  C NMR  spectra were recorded on a Bruker AM 300 instrument at working frequencies 300.13 ( H) and1                     113

75.47 MHz ( C).  Signals for protons and C atoms were assigned based on C—H correlation spectra (CH-corr.).  Mass spectra13
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were taken in an MX-1320 instrument (EI, 70 eV).  Optical rotations were measured on a Perkin—Elmer 141 polarimeter.  We
used (+)-δ-cadinol with mp 137.8 C and optical rotation [α]  +100.3  (c 1.0, CHCl ).o      o

D
20

3
1R,3S,6S,7R,10S-7-Isopropyl-4,10-dimethylbicyclo[4.4.0]dec-4-en-3,10-diol (4).  mp 102-103 C (Et O), [α]o

2 D
26

+49.1  (c 1.0, CHCl ).o
3

PMR spectrum (CDCl , δ, ppm, J/Hz): 0.81 [3H, d, J = 7.0, CH(CH )CH], 0.88 [3H, d, J = 7.0, CH (CH)CH], 1.203 3 3 3 3
(1H, m, H -9), 1.25 (3H, s, CH C-10), 1.37 (1H, m, H-7), 1.50 (3H, m, CH -8 and H -9), 1.67 (1H, dd, J  = 9.5, J  = 5.0,ax               eq     gem   2eq-33 2
J was not determined, H -2), 1.73 (1H, m, H-1), 1.75 (3H, s, CH C-4), 1.88 (1H, dqq, J  = 4.5, J  = 7.0,2eq-1    eq             Me2CH-7   Me2CH-Me3
Me CH), 2.05 (1H, m, J  = 5.0, H-6), 2.24 (1H, dd, J  = 9.5, J ), 2.56 (1H, br.s, OH),2 6-5       gem   2ax-3 = 7.5, H -2), 2.50 (1H, br.s, OH     ax

4.03 (1H, dd, J3-2eq = 5.0, J3-2ax = 7.5, H-3), 5.54 (1H, qd, J5-Me = 1.5, J5-6 = 5.0, H-5).
C NMR spectrum (CDCl , δ, ppm): 16.22 (CH ), 19.62 (CH ), 21.15 (C-8), 21.70 (CH ), 26.47 (Me C), 27.74 (CH ),13

3 3 3  3 2 3
29.80 (C-2), 35.13 (C-9), 37.18 (C-6), 43.32 (C-7), 44.40 (C-1), 70.72 (C-3), 72.07 (C-10), 128.37 (C-5), 137.29 (C-4).

Found (%): C 75.78, H 11.19, C H O .15 26 2

Calc. (%): C 75.58, H 10.99.
1S,4R,5S,8S,10R-4-Isopropyl-1,7-dimethyl-11-oxatricyclo[6.2.1.0 ]undec-6-ene (5).  [α]  -58.0  (c 1.0, CHCl ).5,10

D
26 o

3
PMR spectrum (CDCl , δ, ppm, J/Hz): 0.83 [3H, d, J = 6.5, CH(CH )CH], 0.86 [3H, d, J = 6.5, CH (CH)CH], 1.023 3 3 3 3

(1H, m, H-4), 1.08 (3H, s, CH C-1), 1.28 (1H, m, H -3), 1.40 (1H, m, H -2), 1.53 (1H, m, H -3), 1.62 (2H, m, H -9, Me CH),3 ax     ax     eq     ax 2
1.65 (3H, d, J  = 1.7, CH C-7), 1.72 (1H, m, H -2), 1.90 (1H, ddd, J  = 5.0, J  = 5.4, and J  = 8.0, H-10), 2.25Me-6       eq     10-9eq   10-5    10-9ax3
(1H, ddd, J  = 5.0, J  = 5.4, and J  = 10.8, H -9), 2.50 (1H, m, H-5), 3.94 (1H, d, J = 5.4, H-8), 4.88 (1H, m, H-6).9eq-10 9eq-8    gem   eq

C NMR spectrum (CDCl , δ, ppm): 19.33 (C-3), 20.83 (2CH ), 20.92 (CH ), 25.42 (Me C), 30.19 (CH ), 30.51 (C-13
3 3 3 2 3

2), 35.42 (C-9), 38.50 (C-10), 38.90 (C-5), 44.98 (C-4), 76.58 (C-8), 81.60 (C-1), 127.26 (C-6), 140.19 (C-7).
Mass spectrum (EI), m/z (I , %): 220 [M]  (25).rel

+

Found (%): C 81.64, H 10.69, C H O.15 24

Calc. (%): C 81.76, H 10.96.
1R,4R,5R,6R,8R-8-(211-Benzyloxy-311-oxobutyl)-4-isopropyl-1-methyl-6-methoxy-7-oxabicyclo[3.2.1 ]octane (6).1,5

[α]  -55.0  (c 1.0, CHCl ).D
20 o

3
PMR spectrum (δ, ppm, J/Hz): 0.80 [3H, d, J = 6.8, CH(CH )CH], 0.87 [3H, d, J = 6.8, CH (CH)CH], 1.18 (3H, s,3 3  3 3

CH C-1), 1.25 (1H, m, H-4), 1.35-1.45 (3H, m, CH -2 and H-8), 1.50-1.62 (3H, m, Me CH, CH -3), 1.75 (1H, ddd, J  =3 2 2 2 1'ax-2

2.6, J  = 9.6, J  = 11.0, H -11), 2.05 (1H, ddd, J  = 3.8, J  = 9.9, J  = 11.0, H -11), 2.12 (3H, s, CH C-31), 2.401'ax-8   gem   ax        1'eq-2'   gem   eq1'eq-8 3
(1H, d, J  = 3.4, H-5), 3.30 (3H, s, OCH ), 3.92 (1H, dd, J  = 2.6, J  = 9.9, H-21), 4.30 (1H, d, J  = 10.8, CH Ph),5-8           2'-1'ax   2'-1'eq       gem3 2
4.53 (1H, d, J  = 10.8, CH Ph), 4.70 (1H, s, H-6), 7.30 (5H, m, Ph).gem 2

C NMR spectrum (δ, ppm): 20.65 (CH ), 22.03 (CH ), 22.18 (CH ), 22.29 (C-3), 25.45 (CH ), 27.61 (CMe ), 30.6013
3 3 3  3  2

(C-2), 36.65 (C-11), 40.28 (C-4), 43.35 (C-5), 48.03 (C-8), 54.71 (OCH ), 72.02 (OCH Ph), 83.29 (C-21), 86.22 (C-1), 109.223 2
(C-6), 127.84, 127.95, 128.02, 128.20, 128.37, 137.57 (Ph), 204.32 (C-31).

Found (%): C 73.53, H 9.24, C H O .23 34 4

Calc. (%): C 73.76, H 9.15.
1S,(2R),4R,5S,6R,8S-8-(211-Hydroxybut-3 11-yn-211-yl)-4-isopropyl-1-methyl-9-oxa-5-(222-cyano-222-

ethoxycarbonylethenyl)bicyclo[4.3.0]nonane (7). [α]  +50.6  (c 1.0, CHCl ).D
20 o

3
PMR spectrum (CDCl , δ, ppm, J/Hz): 0.78 [3H, d, J = 6.8, CH(CH )CH], 0.92 [3H, d, J = 6.8, CH (CH)CH], 1.103 3 3 3 3

(1H, m, H -3), 1.30 (1H, m, H -3), 1.39 (3H, t, J = 7.2, CHCH O), 1.44 (6H, s, CH C-1 and CH C-21), 1.55-1.76 (4H, m,ax     eq 3 2  3  3
CH -2, Me CH, H-4), 2.10 (3H, m, CH -7, H-6), 2.50 (1H, s, H-41), 2.60 (1H, br.s, OH), 3.0 (1H, ddd, J  = 4.5, J  = 11.0,2 2  2  5-6   5-1"

J  = 11.0, H-5), 4.02 (1H, d, J  = 5.8, J  = 10.3, H-8),  4.33 (2H, q, J  = 6.1, OCH ), 7.51 (1H, d, J  = 11.0,5-4       8-7ax   8-7b        Me2CH-Me       1"-52
H-12).

C NMR spectrum (CDCl , δ, ppm): 14.18 (CH ), 15.66 (CH ), 21.40 (CH ), 21.70 (C-3), 25.33 (CH ), 25.62 (Me C),13
3  3 3 3  3 2

27.50 (CH ), 29.74 (C-7), 35.76 (C-2), 41.40 (C-4), 42.87 (C-5), 48.77 (C-6), 62.76 (OCH ), 67.76 (C-41), 71.82 (C-1), 82.043 2
(C-21), 84.45 (C-8), 86.8 (C-31), 109.78 (C-22), 113.50 (CN), 161.1 (C�O), 165.9 (C-12).

Found (%): C 70.33, H 8.58, N 3.29, C H NO .22 31 4

Calc. (%): C 70.75, H 8.37, N 3.75.
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